Developing Reports: Note-Taking

When you've located the right sources of information for your report, it's time to start gathering the right information from them and developing it into a report. In other words, it's time to start reading, summarizing, paraphrasing, interviewing, measuring, calculating, and developing information any other way your report project requires. The technical report may be one of the largest writing projects that you've ever tackled: you may wonder how you are going to do all that reading and remember all that information. Concerning the reading, here are several suggestions:

As for remembering the information you gather for your report, the most practical suggestion is to use some form of note-taking. Note-taking refers to any system for collecting and storing information until you can use it in the report. Note-taking involves the skills of summarizing, paraphrasing, or quoting. A good system of note-taking is one that enables you to gather a large amount of information over a long period of time and to be able to use that information without having forgotten it or lost it in the meantime.

Traditional note-taking process: an overview

In the traditional system of taking notes for a long report, you

  1. Develop a rough outline.
  2. Do any preliminary reading necessary to construct a rough outline.
  3. Locate your information sources, and make bibliography cards for each source.
  4. Take the actual notes on index cards.
  5. Label each notecard according to its place in the outline.
  6. Provide bibliographic information on each notecard.
  7. Change or add extra detail to the outline as the note-taking process continues.
  8. Check off the areas of the outline for which sufficient notes have been taken.

When you have taken sufficient notes to cover all parts of an outline, you transcribe the information from the notecards into a rough draft, filling in details, adding transitions, and providing your own acquired understanding of the subject as you write. Naturally, you may discover gaps in your notes and have to go back and take more notes.

Developing the rough outline

As the section on outlining emphasizes, you must have a working outline before you begin gathering information. The rough outline shows you which specific topics to gather information on and which ones to ignore. Think of the outline as a series of questions:

Rough outline for a report Questions generated light water nuclear reactors by the outline I. Pressurized Water Reactors What are the main differ- A. Major Components ences? what are the main B. Basic Operation components? what are the materials? design? dimen- sions? how many are in op- eration? where? who designed them? II. Boiling Water Reactors How does they differ from PWRs? A. Major Components What are the main components? B. Basic Operation What are the materials? de- sign? dimensions? designers? where used? how many? III. Safety Measures What are the chief dangers? A. Pressurized Water Reactor What are the dangers and safety measures associated with PWRs? B. Boiling Water Reactors What are the dangers and safety measures associated with BWRs? C. Role of the Nuclear Regu- How does the NRC regulate latory Commission nuclear power plants? what standards does it enforce? how? IV. Economic Aspects of Light Water What are the construction, Reactors operation, maintenance, and A. Construction Costs fuel costs? what about the availa- B. Operation and Maintenance bility of fuel? how do these Costs costs compare to output? how do the PWR and the BWR compare in terms of costs and output? C. Operating Capacity How much electricity can a LWR generate at full capacity

Figure 1. Viewing an outline as a series of questions

If you don't have a good, specific outline, the sky is the limit on how many notes you can take. Think of the outline as a set of boxes that you fill up with the information you collect as you do your research for the report:

Figure 2. Gathering information and taking notes: you continue gathering information from the various sources until all the boxes are filled

Step 1. If you have not already done so, use the suggestions here or the steps in the section on outlining to create as detailed a rough outline of your report project as you can.

Information on the bibliography cards

On the bibliography cards you should record information that enables you or your readers to locate the books, articles, reports, and other sources. Remember that you'll use this information to create the bibliography or list of references for your report. See the examples of bibliography cards for books, magazine articles, encyclopedias, and government documents; the section on documentation shows you details on the information to record on many different types of sources, but remember these general guidelines:

Information on the notecards

In the traditional note-taking system, a notecard typically looks like this:

BWR--fuel rod (III,A,1,b) fuel rod material--Zircaloy (same as PWR fuel rod) 148 in. long X 0.493 in. diam. slightly longer > PWR fuel rod 16 D, 749

Figure 3. A typical notecard

This notecard has the following features:

Locator. The "locator" phrase or number tells you where the note fits into the outline, that is, when and where you'll use this information in the report. Locaters must be updated regularly. As you read, take notes, and learn more about your subject, you can flesh out, or "elaborate," your outline more and more, subdividing it into third, fourth, and even fifth levels. This process is illustrated in the section on updating the outline.

Bibliographic information. Each notecard must also contain bibliographic information, those details about the source of the note: the author, title, page number, and so on. Rather than write all such information on each notecard, use abbreviations: assign a letter to each source, and keep track of the sources on bibliography cards, as shown above.

Step 2. If you've not already done so, locate sources of information that may be useful to you in your report work. See the section on finding information sources, and follow the steps there, if necessary.

Methods of recording information on notecards

The actual information that you record on the index card is rather small: a few statistics or a sentence or two, and not much else. You take such small bits of information to make it easier to "shuffle" your notecards into the sequence in which you'll use them in writing the rough draft. There are three ways of recording the information on notecards:

Direct quotation. In most technical reports, direct quotation is needed only for the following situations:

Here is an example notecard with a direct quotation:

Myers, author of The Nuclear Power Debate and somewhat of a supporter of nuclear, emphs heavy inspect and penalties: During the period between July 1, 1975 and September 30, 1976 the NRC listed 1,611 items of noncompliance. Only six of these were considered serious violations, 923 were classi- fied as infractions, and 682 were noted as deficiencies. The NRC issued fines to ten utilities totaling $172,250 between July 1, 1975 and December 15, 1976. NRC officials report that the limited use of fines and the efforts to get industry to regulate itself have worked. "By and large," one NRC offi- cial told IRRC, "I think our enforcement program is working." H, 46

Figure 4. Original passage and notecard with direct quotation

When you copy a direct quotation onto a notecard, remember to do a few extra things that will save time and frustration later on:

There are essentially two types of direct quotation: "block" quotations and "running" quotations. Here is an example of a block quotation (any quotation over 3 lines long, which is indented):

In Myers' view, the nuclear power industry has every reason to comply with the NRC's regulations to the very letter: The NRC issues an order to shut down or imposes civil fines only after repeated violations have in- dicated what the NRC considers "a pattern of non- compliance." The NRC argues that, particularly with power plants, civil penalties are unnecessary for the most part. "The greatest penalty," one official said, "is to require the plant to shut down, forcing it to buy replacement power (often at a cost of $100,000 to $200,000 per day) elsewhere. A civil penalty's largest cost--the NRC is limited to a $5,000-per-violation ceiling per 30 days--is the stigma attached to it." (8:46) The "stigma" refers to the fact that, once a nuclear power plant is fined, it will likely be the target of public con- cern and even more stringent and frequent NRC inspection.

Figure 5. Block quotation and a running quotation

"Running" quotations are direct quotations that are trimmed down and worked into the regular sentences of a report. Notice how much smoother and more efficient the running quotation is in the revised version below:

Ineffective direct quotation There are two types of light water reactors: the pressurized water reactor and the boiling water reactor. "LWRs of both types convert heat to electricity with an efficiency of about 32 percent--significantly less than the best fossil-fueled plants, although about equal to the national average for all thermal electricity generation" (13:438). As for harnessing the energy potential of uranium, LWRs are estimated to average only between 0.5 and 1.0 percent. Revision with running quotation There are two types of light water reactors: the pressurized water reactor and the boiling water reactor. According to Paul Ehrlich, who has been a consistent critic of nuclear power, both these types of LWRs "convert heat to electricity with an efficiency of about 32 percent--significantly less than the best fossil-fueled plants, although about equal to the national average for all thermal electricity generation" (13:438). As for harnessing the energy potential of uranium, LWRs are estimated to average only between 0.5 and 1.0 percent.

Figure 6. An ineffective block quotation revised as a running quotation

Guide for using direct quotations

When you use direct quotations in your report, keep these guidelines in mind.

Paraphrasing. In technical-report writing, usually the better approach to note-taking is to paraphrase. When you paraphrase, you convey the information fact-by-fact, idea-by-idea, and point-by-point in your own words. The writer of the original passage ought to be able to read your paraphrase and say that it is precisely what she or he had meant. Here are some example paraphrased notecards:

BWR--fuel assembly (III,A,1,3) fuel assembly--63 f rods spaced, supported in a sq (8 x 8) arrangement by upper + lower plate 3 kinds: (a) tie rods; (b) water rod); (c) stand f rods 3rd, 6th f rods on a bundle's outer edge act as tie rods the 8 tie rods screw into castg of lower tie plate water rod: acts as spacer support rod, as source of moderator material close to the center of f bundle K, 2001 BWR--fuel assem (III,A,1,3) fuel channel--enclosure for f bundle; f bundle + f channel make up fuel assem is a tube with a square shape, made of Zircaloy dimensions: 5.518 in. X 5.518 in. X 166.9 in. function: channel core coolt thru f bundle and guide control rods K, 2001 "Nuclear Reactor," Van Nostrand's Scientific Encyclopedia, Vol. 2, 1980 ed., p.2001

Figure 8. Paraphrased notecards

Paraphrases are necessary and preferable for a number of reasons:

Here is an example of an original passage and its paraphrases, with the unique wording of the original (which must be changed in the paraphrase) underlined.

Original passage About a third of light-water reactors operating or under construction in the United States are boiling-water reactors. The distinguishing characteristic of a BWR is that the reac- tor vessel itself serves as the boiler of the nuclear steam supply system. This vessel is by far the major component in the reactor building, and the steam it produces passes directly to the turbogenerator. The reactor building also contains emergency core cooling equipment, a major part of which is the pressure suppression pool which is an integral part of the containment structure. . . . . earlier BWRs utilized a somewhat different containment and pressure suppression system. All the commercial BWRs sold in the United States have been designed and built by General Electric. Several types of reactors that use boiling water in pres- sure tubes have been considered, designed, or built. In a sense, they are similar to the CANDU, described in Chapter 7, which uses pressure tubes and separates the coolant and mo- derator. The CANDU itself can be designed to use boiling light water as its coolant. The British steam-generating heavy- water reactor has such a system. Finally, the principal reac- tor type now being constructed in the Soviet Union uses a boiling-water pressure tube design, but with carbon modera- tor. Anthony V. Nero, A Guidebook to Nuclear Reactors, Berkeley: University of California Press, 1979. Paraphrased version Boiling water reactors, according to Anthony V. Nero in his Guidebook to Nuclear Reactors, either completed or constructed, make up about one third of the light-water reactors in the U.S. The most important design feature of the BWR is that the reactor vessel itself acts as the nuclear steam supply system. The steam this important component generates goes directly to the turbogenerator. Important too in this de- sign is the emergency core cooling equipment which is housed with the reactor vessel in the reactor building. One of the main components of this equipment is the pres- sure suppression pool. The containment and pressure sup- pression system currently used in BWRs has evolved since the early BWR designs. General Electric is the sole design- er and builder of these BWRs in the U.S. The different kinds of reactors that use boiling water in pressure tubes are similar to the CANDU, which separates coolant and moderator and uses pressure tubes also. CANDU can also use boiling light water as a coolant. The British have designed a reactor generated steam from heavy water that uses just such a system. Also, the Soviets have de- veloped and are now building as their main type of reactor a boiling pressure tube design that uses carbon as the moderator. (12:232)

Figure 9. Avoiding the original wording in paraphrases

Guide for writing and using paraphrases

Here are some guidelines to remember when paraphrasing:

Summary. Summaries are usually much shorter than their originals. A summary concentrates on only those points or ideas in a passage that are important. Unlike in a paraphrase, the information in a summary can be rearranged. Here is a passage from which summaries below will be taken:

Numerous systems are available for controlling abnormali- ties [in boiling water reactors]. In the event that control rods cannot be inserted, liquid neutron absorber (containing a boron compound) may be injected into the reactor to shut down the chain reaction. Heat removal systems are available for cooling the core in the event the drywell is isolated from the main cooling systems. Closely related to the heat removal systems are injection systems for coping with de- creases in coolant inventory. Both abnormalities associated with the turbine system and actual loss of coolant accidents can lead closing of the steam and feedwater lines, effectively isolating the reactor vessel within the drywell. Whenever the vessel is isolated, and indeed whenever feedwater is lost, a reactor core isolation cooling system is available to maintain coolant inventory by pumping water into the reactor via connections in the pressure vessel head. This system oper- ates at normal pressures and initially draws water from tanks that store condensate from the turbine, from con- densate from the residual heat removal system, or if neces- sary, from the suppression pool. A network of systems performs specific ECC [emergency core cooling] functions to cope with LOCAs [loss-of-cool- ant accidents]. (See Figure 6-9.) These all depend on signals indicating low water level in the pressure vessel or high pressure in the drywell, or both.

Figure 6-9. BWR emergency core cooling systems The systems include low-pressure injection, utilization of the RHR system, and high- and low-pressure core spray systems. The high-pressure core spray in intended to lower the pressure within the pressure vessel and provide makeup water in the event of a LOCA. In the event the core is uncovered, the spray can directly cool the fuel assemblies. Water is taken from the condensate tanks and from the suppression pool. On the other hand, should it become necessary to use low-pressure systems, the vessel must be depressurized. This can be accomplished by opening relief valves to blow down the vessel contents into the drywell (and hence the suppression pool). Once this is done, the low-pressure core spray may be used to cool the fuel assemblies (drawing water from the suppression pool) or RHR low-pressure injection (again from the sup- pression pool) may be initiated, or both. The RHR system may also be used simply to cool the suppression pool. (Two other functions of the RHR are to provide decay heat removal under ordinary shutdown conditions and, when neces- sary, to supplement the cooling system for the spent fuel pool and the upper containment pool.) Anthony V. Nero, A Guide- book to Nuclear Reactors, Berkeley: Univ. of California Press, 1979, pp. 104-107.

Figure 10. Passage to be summarized

Sentence-length summaries. Often summaries are only a sentence long. To create sentence-length summaries, use one or a combination of the following methods:

Extended summaries. A summary can be longer than a single sentence because of the important information contained in the original passage. (Remember, however, that a paraphrase is a point-by-point recap of the original, while the summary is a selection, reordering and condensation of the original.) Here's an extended summary of the passage above on BWR emergency safety systems (Figure 10): Boiling water reactors use numerous systems to control abnormalities in reactor operations. If a problem with control rods occurs, a liquid neutron absorber can be injected to halt the chain reaction. If coolant is cut off from the reactor core, a reactor core isolation cooling system can maintain coolant inventory by pumping water from various storage areas. This system includes low-pressure injection, the residual heat removal system, and the high- and low-pressure core spray systems. The water supply for these various emergency systems ultimately come from the suppression pool.

Guide for using summaries

Whenever you summarize, you must handle the resulting summary the same way you would a direct quotation or paraphrase.

Step 3. With the notetaking system described above, take at least 10 notes using the following steps: (a) find information that you want to summarize, paraphrase, or directly quote; (b) take each note on separate index card; (c) key each notecard to your outline; and (d) include bibliographic information on each card.

Plagiarism. If you follow the guidelines presented in the preceding, plagiarism should not be a problem at all, but make sure you understand what it is. Plagiarism refers to two kinds of theft:

Plagiarism is bad business: the plagiarizer can fail an academic course or lose his or her reputation among business and professional associates. It only takes simple documentation to transform a report with plagiarized material in it into one with legally borrowed material. The section on documentation explains these procedures in detail.

Updating the outline

As you take notes, you must regularly update the locators on all your notecards because as you read, take notes, and learn more about your technical subject, your outline may either change or become more specific. Imagine that you started with this excerpt of a rough outline and had taken these notecards:

Rough sketch outline IV. Safety Measures A. Pressurized Water Reactor Safety Measures B. Boiling Water Reactor Safety Systems C. Role of the Nuclear Regulatory Commission Corresponding notecards BWR--safety sys. (IV,B) safety sys incl control rods, containmt bldg, resid heat removl sys there work like those in PWR unique to BWR: drywell, emergency core coolg sys 1 I, 100 BWR--safety sys (IV,B) drywell--encloses react vess + assoc equip (includes recirc sys, press relief valves on main steam lines) 2 I, 100 BWR--safety sys (IV,B) emergency core coolg sys--handles loss-of-coolt accidents; includes reactor core iso sys, hi- press core spray sys, lo-press core spray sys (figure for this, p.106) 3 I, 105-6 BWR--safety sys (IV,B) react core iso coolg sys: if loss-of-coolt accidt (causg closing of steam lines,feedwtr lines to react vessel), RCICS activated (maintains coolt inventory by pumpg water to reactor via connex in press vess head 4 I, 104 BWR--safety sys (IV,B) hi-press core spray: lowers press w/in press vessel, provides suppl water in loss-of-coolt accidt. with uncovered cores, spray directly cools fuel assemblies (wtr fr condensed wtr storge tanks + suppress pool 5 I, 104

Figure 11. Notecards and the corresponding outline before updating

As you took these notecards, you would update your outline periodically; at the end, the outline might look like this:

Revised outline IV. Safety Measures A. Pressurized Water Reactor Safety Measures B. Boiling Water Reactor Safety Systems 1. The Drywell 2. Emergency Core Cooling Systems a. Reactor core isolation cooling system b. High-pressure core spray

Figure 12. Updated outline

Notice that all five of these notecards are about "IV. B. Boiling Water Reactor Safety Systems." Notecard 1 divides this safety system into the drywell and the emergency core cooling systems. This division produces "1" and "2" under "B." Notecards 3 through 5, about the subsystems making up the emergency systems, produce "a," "b," and "c" under "2."

If you had taken these notes and updated your outline, you would revise the locators on the individual notecards like this:

Notecard Original Updated Alternate no. locators locators locators 1 IV. B same Safety/Boil.Wtr.React. 2 IV. B IV. B. 1 Safety/BWR/drywell 3 IV. B IV. B. 2 Safety/BWR/Em.Cor.Cool. 4 IV. B IV. B. 2. a Saf./BWR/Em.Cor.Cool/ React.Cor.Cool. 5 IV. B IV. B. 2. b Saf./BWR/Em.Cor.Cool./ Hi.Pres.Cor.Spray

Remember that if you don't like the number-combinations as locators, you can substitute short phrases, as is shown in the alternate locators above.

Step 4. Review the notes you took in Step 3, compare them to your report outline, and update your outline as necessary.

Final stages in the notetaking process

As you take notes, check off sections of your outline for which you gather sufficient information, as is done in this outline excerpt. In this example, the writer has taken sufficient notes for much of IV.B. but still needs information for the rest of the outline.

III. Boiling Water Reactors A. Description of the Basic Components 1. Core a. core b. fuel c. fuel rod d. fuel assembly 2. Control Rods 3. Core Shrouds and Reactor Vessel 4. Recirculation System 5. Steam Separators 6. Steam Dryers B. Production of Electricity 1. Circulating Water 2. Separating Steam 3. Drying the Steam 4. Producing Electricity IV. Safety Measures A. Pressurized Water Reactor Safety Measures 1. Residual Heat Removal System 2. Emergency Core Cooling Systems a. passive system b. low-pressure injection systems c. high-pressure injection systems 3. Containment Building B. Boiling Water Reactor Safety Systems 1. The Drywell 2. Emergency Core Cooling Systems a. reactor core isolation cooling system b. high-pressure core spray c. low-pressure core spray C. Role of the Nuclear Regulatory Commission V. Economic Aspects of Light Water Reactors A. Busbar Cost 1. Construction Cost 2. Operation and Maintenance Costs 3. Fuel Costs B. Operating Capacity 1. Availability Factor 2. Capacity Factor

Figure 13. An outline for which note-taking is partially complete

Step 5. Review the notes you've taken to see whether you can cross off any items in your outline. Once you've done this, return to Step 3, and repeat the process until you've gathered enough information.

In the final step in notetaking, you arrange the notecards in the order that you'll use them as you write the rough draft. Read through your cards several times to make sure the sequence is right and that there are no gaps in the information you've gathered. When you're sure that the order is right, write sequence numbers on each of the cards to preserve the order (see the sequence numbers on the notecards in the next section). With the notecards in the right order and numbered, you are ready to write the first draft, which is discussed in the section on rough drafting.

Step 6. Put the notes that you've taken in the preceding steps into a proper sequence, and number them.

Other systems of notetaking

There are plenty of other ways to take notes. The main point of any form of note-taking of course is to make your report work easier and less time-consuming. You may prefer some other note-taking system because of your own work style or because of your report project. Or, you may end up using some other system in combination with the traditional one. Any system that enables you to get your work done efficiently is a good one.